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An Efficient Algorithm for Finding Zeros of a Real
Function of Two Variables

MICHAL MROZOWSKI

Abstract — A new fast algorithm is described for finding the roots of a -
real function of two variables. The procedure searches the interval in which
a function changes sign and then automatically locks to a curve f(A, p) =0,
following it inside a given rectangular region. The method ensures that at
each step a new pair of points with different function signs is generated,
and in effect it minimizes the number of function evaluations. Complemen-
tary algorithms opening up opportunities for the further automation of the
search process are also presented in outline. An example of the application
of the new procedure is included. The proposed algorithm is particularly
suitable for solving the electromagnetic problems leading to transcendent
equations.

I. INTRODUCTION

Among the most frequently occurring problems in electromag-
netic field theory are the so-called eigenvalue problems [1], [2]
(both general or nonstandard and ordinary ones) in which the
solution exists for the infinite number of a certain parameter A.
The physical meaning of this parameter depends on the problem
and is usually chosen to be the propagation constant or the
resonance frequency, in which case it may be called the eigen-
value. However A may also be any-other physical parameter of
the structure under investigation and then the term “eigenvalue”
may be inadequate [3], [4]. The parameter A can be determined
by solving an intricate nonlinear characteristic equation. In most
cases one is interested in the behavior of A as a function of a
second parameter, say p, and therefore the characteristic equa-
tion is solved for subsequent discrete values of p. As a result one
gets a number of points scattered on the A~ p plane which have
to be linked so as to form A(p) curves. Such a process may
sometimes be difficult, especially if the curves approach one
another and it is hard to separate them. Accordingly it may be
necessary to carry out the computations several times in order to
obtain a A—-p diagram. Another drawback is that all existing
procedures for nonlinear equation solving search for an interval
in which the function changes sign. However the sign change may
also be caused by a pole of the characteristic equation or a
spurious solution (i.e., a solution having no physical meaning [5]).
Consequently one has to verify each computed point, which is
time consuming, especially if the characteristic equation is ob-
tained by means of a variational method.

In this paper a new computer algorithm tracing the run of the
zeros of a function of two variables inside a given rectangular
region is proposed. The algorithm minimizes the number of
function evaluations needed to compute the locations of roots.
Also, it enables one to eliminate the curves caused by the poles of
the function, as well as spurious solutions at the early stage of
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computations, and offers a restart facility. It is also worth men-
tioning that with the algorithm described herein one may obtain
A—p diagrams, even complicated onss, in a single program run.

II. THE ALGORITHM
We consider a nonlinear equation:
f(A,p)=0
subject to the constraints
Aain <A <Apoy a4 Prjn <P < Prua (2)

where f is a continuous function of the two variables A and p
and A, A maxs Penins Pmax @€ constants. Note that z = f(A, p) is
a surface in three-dimensional space (A, p,z). Hence, (1) de-
scribes the curve resulting from the intersection of this surface
with the plane z=0. Let us consider a rectangular cell with
vertices located inside the examined region. Assuming that at
none of the nodes f(A, p) =0, we have exactly 16 combinations
of the function signs at the vertices, and these possible situations
can be divided into the four following groups:

1)

min

A (+++4+)(———-)

B (—++-)(++=—=)(+——+),(——++)

C (—+++H),(+++-),(++—+),(+—++),
(+=——)h (==K (==+-)(=+-7)

D (—+—+)(+—+-)

If the distance between vertices is small, we may assume that the
curve f(A, p) = 0 does not pass through the rectangles belonging
to the first group. For the remaining groups, the function changes
sign and we may conclude that each such rectangular cell con-
tains a part of one (B,C) or even two (D) curves f(A, p) =0. All
these cases can be transformed into four situations, shown
schematically in Fig. 1. Note, that group D is ambiguous because
the curves can either cross one another inside the cell (Fig. 1(c)),
which means that the surface z = f(A, p) has a saddle point, or
can have no common points (Fig. 1(d)). Provided we know an
interval inside which the function changes sign, we can construct
on such an interval a rectangle and then, having examined the
signs at the vertices, determine the side on which the exit point is
situated. Obviously, this side is a base for the construction of the
adjacent cell where the described process can be repeated.

This analysis leads to an algorithm which locks to the curve
f(A, p) =0 and follows it inside the examined region. We may
assume that the solutions of (1) do not form closed curves inside
the rectangle given by (2). Dividing the intervals (A ., A0
and { po.o, Pmax ) into N and M parts, respectively, we define the
uniform mesh of points (A,,p,), i=1---N, j=1---M. Next,
for nodes located on the perimeter, we compute the function
values and if they do not have the same sign at two subsequent
points we start the tracing process. At cach step we evaluate the
function at two new points located on a grid line parallel to the
line determined by the two most recently found nodes with
opposite function signs. These four points form a new rectangu-
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Fig.' 1. Intersection of the plane z = 0 with the surface z = f(A, p).

lar cell. Depending on the combination of function signs at the
vertices of the rectangle, we pass from one cell to another
following the curve f(A, p) = 0 until it reaches one of the sides of
the frame. The search process on the perimeter is then resumed.
However, the end point of each curve should be eliminated from
further calculations so as to avoid following the curve twice, i.e.,
one time from the start point and a second time from the other
end in the opposite direction.

III. COMPLEMENTARY ALGORITHMS

Presently we will discuss several aspects of the algorithm which
allow one to achieve greater efficiency and versatility in the
numerical procedure. Passing from one cell to another, we com-
pute the function values at two new points so that we know the
function signs at four nodes. Note, however, that if the entry and
exit points are situated on two perpendicular sides of a cell, the
information about the function values in all four vertices is
redundant. This is because the function signs at three of them
only suffice to determine the transition of a curve through a cell.
(For example, in the situation shown in Fig. 2, it is necessary to
know the function values at the indicated nodes.) Hence, the
procedure would be still more efficient if, instead of computing
function values at the nodes of a cell in a fixed order, we decided
on which side the exit point is possibly situated, and accordingly
chose the proper vertex to compute the function. If the calcula-
tions confirm our assumption, we pass to the adjacent cell
without checking the function sign at the fourth vertex. The slope
of the curve on entry to a cell may be a criterion here for the
sequence of computations.

Another important aspect of the algorithm is that the tracing
process starts from the point located on the perimeter of the
specified region. If a change of the function sign is encountered,
it is possible to carry out tests verifying whether it is caused by a
pole of the function or a spurious solution (i.e., a solution having
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Fig. 2. Nodes at which a function has to be computed in order to determine
a curve run.

no physical meaning [5]) and eliminate these improper curves
from the diagram with low cost at an early stage of computa-
tions. We can also exclude fragments of the frame or even the
whole perimeter from calculations providing only the known start
points (for instance cutoff frequencies), in which case the curves
are computed using the minimal number of function calls. The
search process on the perimeter may also be used to control the
computations. As was pointed out earlier, some intervals, namely
those including the ends of curves, should be automatically
eliminated from the frame during the computations. If we keep
the record of already verified frame points, we can interrupt the
computations at any moment and then resume the searching
from the first node not yet examined. This property gives us an
excellent tool for the construction of a restart procedure, a
facility which is offered only on mainframes. The restart proce-
dure is based on the verified frame points record and the two last
zero loci (dumped periodically on a disk). These data are suffi-
cient for determining the direction in which the curve was fol-
lowed and then resuming the tracing process inside the examined
region. Such a facility is extremely useful, in particular if the
calculations are lengthy, because it prevents the program from
accidental supply breakdowns and gives the user absolute control
over the whole process.

Finally, we will highlight the pitfalls of the described al-
gorithm. Generally speaking, the procedure suffers from the
choice of mesh size. The curve is interpolated inside a cell by a
segment, and accordingly we obtain a broken line instead of a
smooth curve. One solution to minimize the error is to diminish
the spacing between grid lines. However, a finer mesh would
entail a rapid increase in the cost of computations. An alternative
way is to compute the broken lines in the low-resolution process
and subsequently to interpolate the curves between nodes using,
for instance, spline functions [6]. Another problem arises if the
curves approach one another, since, in this case, they will not be
separated unless the mesh is fine enough (Fig. 3). Owing to the
great distance between the grid lines, the procedure would find
two lines, namely EFRQ and HGLS, losing the fragments FG
and RL. Again, to cover the entire region with a denser mesh is
by no means a remedy for this problem. This is because first it
would increase the cost and, second, the mesh size that would be
sufficient to separate the curves is not known exactly. The
solution is to compute the diagram and then find all return
points (these points are labeled R and L in Fig, 3). The return
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Fig. 3.

Illustration of the correction process.

points can be class1f1ed into two categories, namely left and right
- ones. The next step of the correction -procedure would be to
match each left return point with its right counterpart and for
cach such pair to construct a new local frame: (the rectangle
A,-A, in Fig. 3) covering its interior with a finer mesh. Obvi-

ously such a procédure can be iterated so that the proper - diagram .

can be obtained in a single program run.

The method described in this paper is similar to the contour
following scheme. in three dimensions.- However, function con-
touring is slightly different from zero searching. First of all, the
contour following schemes allow contours to form closed curves.
Consequently, they search the whole examined region for start
points, assuming that function values are provided for each node.
One could modify one of the existing library procedures so that it
would follow- the contour f(X, p) = 0 searching the start points
on the perimeter only. Such a modification would immediately
bring about the problem of curve separation. Second, standard
contouring procedures perform three-dimensional interpolation
of a function inside a cell, which means that they require function
~ values at additional points. Consequently, these procedures would
be less efficient than the one proposed herein. For instance, in
procedure OB14 from the Harwell Subroutine Library [9] the
surface z = f(A, p) is approximated inside a cell by quadratics
spanned over triangles. In effect this procedure requires as many
as 16 values of the function in order to plot a part of a line which
is inside a cell (compared to four or even three in the proposed
algorithm). Finally, none of the standard procedures uses any of
the complementary algorithms descnbed above enhancing the
efflcrency and versatility of the new ‘method.

1V. NUMERICAL ExXAMPLE

The algorrthm presented in this paper was successfully apphed
to solve characteristic equations in’ various nonstandard eigen-
value problems. All complementary algorithms outlined in the
previous section, including -the restart facility, were also tested
and found: very useful and reliable during the two years of their
exploitation. As an example of the application, a sample disper-
sion diagram for a layered parallel-plate line containing a per-
pendicularly magnetized ferrite is presented in Fig. 4. Such a

structure has been previously investigated by the author {71, and-

it was shown that the dispersion equatlon can be obtained using
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Frg 4. A sample dispersion diagram obtained with the proposed procedure
(a. parallel-plate line with a perpendicularly magnetized layer of a
gyromagnetic medium). :

the normal field components approach. The ferrite medrum causes
coupling between the modes of the line. Accordmgly, traditional
methods would require great ‘effort to determine the actual curve
run, The new algorithm ensures efficiency of numerical computa-
tions. In particular, a part of the frame, indicated by the dashed
line, was excluded from calculations by virtue of the theoretical
analysrs of the boundary value problem for such a structure [8].
Moreover, the curves were automatically separated. After the
completion. of the first step (low-resolution mesh: AB=01
rad/mm, Af = 1250 MHz), the procedure found three pairs of
return points. Then the local frames, also shown in the figure,
were constructed and grids with AB = 0.02 rad /mm and Af = 50

‘MHz were -used in the correction process. One iteration was

sufficient to separate the curves.

In- the example discussed above, the proposed method was
apphed to solve a dispersion equation for a complicated wave-
guiding structure. The use of the new method, however, is not
restricted to finding zero loci of equations resulting from the
analysis of eigenvalue problems This procedure would find ap-
plication in any other situation in which a nonlinear equatlon of
two vanables occurs.

V. CONCLU‘;IONS

An efficient algorrthm was proposed to compute the curves of
zero loci of a real functron of two variables. Startmg from a point
located on the perimeter of the prescribed region, the procedure
follows each curve, minimizing the number of function evalua-
tions. Different aspects of the algorithm were -highlighted and

* ways- were given to obtain extreme utility. The method was .

successfully applied in various electromagnetic problems and
proved its efficiency, versatility, and reliability.

'
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Analysis of Coplanar E— H Plane T-Junction Using
Dissimilar Rectangular Waveguides

B. N. DAS, G S. N. RAJU, anp AJOY CHAKRABORTY

Abstract — An analysis of a T-junction which differs from conventional
H -plane T-junctions in that the T arm is rotated by 90° and coupling takes
place through an inclined slot is presented. Since use of standard X-band
waveguides result in such a T-junction operating above 11.7 GHz, non-
standard waveguide dimensions have been considered to bring down the
operating frequency to 9.375 GHz. The effect of a change of the broad
dimension of the primary feed waveguide on the resonant conductance is
evaluated. The variations of resonant length with the angle of inclination of
the slot, and coupling with frequency, are presented.

I. INTRODUCTION

Investigations of H-plane T-junctions have already been re-
ported [1]. In the present paper, thorough analytical investiga-
tions have been carried out on a T-junction (Fig. 1(a)) in which
the coupling slot is in the narrow wall of the primary guide and
the narrow dimension of the coupled guide is oriented along the
axis of the primary guide. As a result, the E field of the coupled
guide and the H field of the primary guide are coplanar and
hence this type of T-junction is designated as a coplanar £—- H

Manuscnpt recetved May 13, 1987: revised September 28, 1987.

B N. Das and A. Chakraborty are with the Department of E and ECE,
Indian Institute of Technology, Kharagpur 721302, India

G S. N. Raju was with the Department of ECE, A U. College of Engineer-
ing, Visakhapatnam 530003, India He 1s now with the Department of E and
ECE (under QIP), Indian Institute of Technology, Kharagpur 721302, India

TIEEE Log Number 8718857,

=]
N
N
N
-
N
N
~
N
w
~.

7
yi
e ~ NET 7, =
s ~ S, —
s e GUIDE 2 T g
y I bz <
; [ &
X 4 N ’/J——~—--——A_~A~—--____
A 0\0(" s
// [©) 2w
<
T 7
EY L7 PORT 1
1 ¥ Y
b5 —
(a)
|
, PLANE OF THE CENTRE
)
v oF THE sLor
Cﬁ'—-— C;——»
PORT I PORT II
GUIDE 1 Y=g Iba GUIDE 1
- Cy” - C;
[
':
(b)

Fig. 1 (a) Coplanar E~ H plane T-junction. (b) Equivalent network repre-

senting 1impedance loading 1n guide 1.

plane T-junction.! The power is coupled to the T-arm through an
inclined slot in the narrow wall of the primary guide. It can be
noted that in this type of T-junction no power can be coupled
using either a longitudinal or a vertical slot. When such a coupler
is made using standard X-band waveguides the maximum slot
length which can be obtained is 14 mm with an inclination of 45°
and the resonant frequency is around 12 GHz.

In the present work, investigations have been carried out to
find the waveguide dimensions necessary for slots which resonate
around 9.4 GHz. Further investigations have also been carried
out to keep the normalized slot conductance loading on the
primary guide as low as 0.01. This impedance is expressed in
terms of self-reaction and discontinuity in modal current. Evalua-
tion of self-reaction in the coupled guide employs TE and T™M
mode fields instead of the hybrid mode field used earlier [1]. To
obtain the self-reaction in the primary guide, the magnetic cur-
rent in the inclined slot is resolved into transverse and longitudi-
nal components.

Computations have been carried out to obtain the waveguide
dimensions for which a low value of normalized slot conductance
is obtained at a resonant frequency around 9.375 GHz. Com-
puted results of the various parameters of engineering impot-
tance, e.g., resonant slot length, slot conductance, and coupling,
are presented.

I The Editor has kindly brought to the notice of the authors that this type of
structure was reported by W. H. Watson 1n Fig. 34 of his paper “Resonant
slots,” JIEE (London), vol. 93, pt 3A, pp 747-777, 1946
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