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Short Papers

An Efficient Algorithm for Finding Zeros of a Red

Function of Two Variables

MICHAL. MROZOWSKI

Abstract —A new fast algorithm is described for finding the roots of a

reaf function of two variables. The proeednre searches the interval in wfdeb

a function changes sign and then automatically locks to a curve ~(~, p ) = O,

following it inside a given rectangular region. The method ensures that at

each step a new pair of points with different function signs is generated,

and in effect it minimizes the number of function evaluations. Complemen-

tary algorithms opening up opportunities for the further automation of the

search process are also presented in outfine. An example of the application

of the new procedure is included. The proposed algorithm is partfcnlarly

suitable for solving the electromagnetic problems Ieadlng to transcendent

equations.

I. INTRODUCTION

Among the most frequently occurring problems in electromag-
netic field theory are the so-crdled eigenvalue problems [1], [2]

(both general or nonstandard and ordinary ones) in which the

solution exists for the infinite number of a certain parameter A.

The physical meaning of this parameter depends on the problem

and is usually chosen to be the propagation constant or the

resonance frequency, in which case it may be called the eigen-

vrdue. However A may also be any-other physical parameter of

the structure under investigation and then the term “eigenvalue”

may be inadequate [3], [4]. The parameter A can be determined

by solving an intricate nonlinear characteristic equation. In most

cases one is interested in the behavior of A as a function of a

second parameter, say p, and therefore the characteristic equa-
tion is solved for subsequent discrete values of p. As a result one

gets a number of points scattered on the A-p plane which have
to be linked so as to form A(p) curves. Such a process may

sometimes be difficult, especially if the curves approach one

another and it is hard to separate them. Accordingly it may be

necessary to carry out the computations severrd times in order to

obtain a X – p diagram. Another drawback is that all existing

procedures for nonlinear equation solving search for an interval

in which the function changes sign. However the sign change may

also be caused by a pole of the characteristic equation or a

spurious solution (i.e., a solution having no physical meaning [5]).

Consequently one has to verify each computed point, which is

time consuming, especially if the characteristic equation is ob-

tained by means of a variational method.

In this paper a new computer algorithm tracing the run of the

zeros of a function of two variables inside a given rectangular

region is proposed. The algorithm minimizes the number of

function evaluations needed to compute the locations of roots.

Also, it enables one to eliminate the curves caused by the poles of

the function, as well as spurious solutions at the early stage of
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computations, and offers a restart facility. It is also worth men-

tioning that with the algorithm described herein one may obtain

A-p diagrams, even complicated orms, in a single program run.

IL TlrE ALGORITHM

We consider a nonlinear equation:

‘f(A, p)=o (1)

subject to the constraints

Amin < A < Am= ~d Pmin < P < Pmax (2)

where f is a continuous function of the two variables A and p
and ~~in,~ rtr~ ) ~nrin> Par~ ~e constants. Note that z = f (~>P) is
a surface in three-dimensional space (A, p, z ). Hence, (1) de-

scribes the cuNe resulting from the intersection of this surface

with the plane z = O. Let us consider a rectangular cell with

vertices located inside the examined region. Assuming that at

none of the nodes ~( X, p ) = O, we have exactly 16 combinations

of the function signs at the vertices, and these possible situations

can be divided into the four following groups:

A (++++ ),(––––)

B (–++–), (++––), (+––+), (––+ +)

c (–+++ ),(++ +–), (++–+), (+–++),

(+-– -), (---+ ),(-- +-), (-+--)

D (–+–+),(+–+–).

If the distance between vertices is smrdl, we may assume that the

curve f (A,p ) = O does not pass thrcugh the rectangles belonging

to the first group. For the remaining groups, the function changes

sign and we may conclude that each such rectanguku cell con-
tains a part of one (B, C!) or even two (D) curves f (A,p)= O. All

these cases c~l be transformed into four situations, shown

schematically in Fig. 1. Note, that group D is ambiguous because

the curves can either cross one another inside the cell (Fig. l(c)),

which means that the surface z = f ~{A,p ) has a saddle point, or

can have no common points (Fig. l(d)). Provided we know au

interval inside which the function changes sign, we can construct

on such an interval a rectangle and then, having examined the

signs at the vertices, determine the side on which the exit point is

situated. Obviously, this side is a base for the construction of the

adjacent cell where the described prc)cess can be repeated.

This anrdysis leads to an algorithm which locks to the curve

f (A,p) = O and follows it inside the examined region. We may

assume that the solutions of (1) do not form closed curves inside

the rectangle given by (2). Dividing the intervals (A~,., Am=)

~d (Pm,n, pm=) into N and M parts, respectively, we define the
uniform mesh of points (A{, p,), i x=1 . . . N, j =1 . . . M. Next,

for nodes located on the perimeter, we compute the function

values and if they do not have the same sign at two subsequent

points we start the tracing process. At each step we evaluate the

function at two new points located on a grid line parallel to the

line determined by the two most recently found nodes with

opposite function signs. These four points form a new rectangu-
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Fig. 2. Nodes at which a function has to be computed in order to determine

a curve run.

(d)

Fig, 1. Intersection of the plane z = O with the surface z = ~(~, p)

lar cell. Depending on the combination of function signs at the

vertices of the rectangle, we pass from one cell to another

following the curve ~(A, p) = O until it reaches one of the sides of

the frame. The search process on the perimeter is then resumed.

However, the end point of each curve should be eliminated from

further calculations so as to avoid following the curve twice, i.e.,

one time from the start point and a second time from the other

end in the opposite direction.

III. COMPLEMENTARY ALGORITHMS

Presently we will discuss several aspects of the algorithm which

allow one to achieve greater efficiency and versatility in the

numericaf procedure. Passing from one cell to another, we com-

pute the function values at two new points so that we know the

function signs at four nodes. Note, however, that if the entry and

exit points are situated on two perpendicular sides of a cell, the

information about the function values in all four vertices is

redundant. This is because the function signs at three of them

only suffice to determine the transition of a curve through a cell.

(For example, in the situation shown in Fig. 2, it is necessary to

know the function vahtes at the indicated nodes.) Hence, the

procedure would be still more efficient if, instead of computing

function values at the nodes of a cell in a fixed order, we decided

on which side the exit point is possibly situated, and accordingly

chose the proper vertex to compute the function. If the calcula-

tions confirm our assumption, we pass to the adjacent cell

without checking the function sign at the fourth vertex. The slope

of the curve on entry to a cell may be a criterion here for the

sequence of computations.

Another important aspect of the algorithm is that the tracing

process starts from the point located on the perimeter of the

specified region. If a change of the function sign is encountered,

it is possible to carry out tests verifying whether it is caused by a

pole of the function or a spurious solution (i.e., a solution having

no physical meaning [5]) and eliminate these improper curves

from the diagram with low cost at an early stage of computa-

tions. We can also exclude fragments of the frame or even the

whole perimeter from calculations providing only the known start

points (for instance cutoff frequencies), in which case the curves

are computed using the minimaf number of function calls. The

search process on the perimeter may also be used to control the

computations. As was pointed out earlier, some intervals, namely

those including the ends of curves, should be automatically

eliminated from the frame during the computations. If we keep

the record of already verified frame points, we can interrupt the

computations at any moment and then resume the searching

from the first node not yet examined. This property gives us an

excellent tool for the construction of a restart procedure, a

facility which is offered only on mainframes. The restart proce-

dure is based on the verified frame points record and the two last

zero loci (dumped periodically on a disk). These data are suffi-

cient for determining the direction in which the curve was fol-

lowed and then resuming the tracing process inside the examined

region. Such a facility is extremely useful, in particular if the

calculations are lengthy, because it prevents the program from

accidental supply breakdowns and gives the user absolute control

over the whole process.

Finally, we will highlight the pitfalls of the described al-

gorithm. Generally speaking, the procedure suffers from the

choice of mesh size. The curve is interpolated inside a cell by a

segment, and accordingly we obtain a broken line instead of a

smooth curve. One solution to minimize the error is to diminish

the spacing between grid lines. However, a finer mesh would

entail a rapid increase in the cost of computations. An alternative

way is to compute the broken lines in the low-resolution process

and subsequently to interpolate the curves between nodes using,

for instance, spline functions [6]. Another problem arises if the

curves approach one another, since, in this case, they will not be

separated unless the mesh is fine enough (Fig. 3). Owing to the

great distance between the grid lines, the procedure would find

two lines, namely EFRQ and HGLS, losing the fragments FG

and RL. Again, to cover the entire region with a denser mesh is

by no means a remedy for this problem. This is because first it

would increase the cost and, second, the mesh size that would be

sufficient to separate the curves is not known exactly. The

solution is to compute the diagram and then find all return

points (these points are labeled R and L in Fig. 3). The return
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Fig. 3. Illustration of the correction process.

points can be classified into two categories, namely left and right

ones. The next step of the correction procedure would be to

match each left return point with its right counterpart and for

each such pair to construct a new local frame (the rectangle

Al -Aa in Fig. 3) covering its intenor with a finer mesh. Obvi-

ously such a procedure can be iterated so that the proper diagram

cw be obtained in a single program run.

The method described in this paper is similar to the contour

following scheme in three dimensions. However, function con-

touring is slightly different from zero searching. First of all, he

contour following schemes allow contours to form closed curyes.

Consequently; they search the whole examined region for start

points, assuming that function values are provided for each node.

One could modify one of the existing library procedures so that it

would follow the contour j“( A, p) = O searching the start points

on the perimeter only. Such a modification would immediately

bring about the problem’ of curve separation. Second, standard

contouring procedures perform three-dimensiond interpolation

of a function inside a cell, which means that they require furiction

values at additional points. Consequently, these procedures would

be less efficient thfi the one proposed herein. For instance, in

procedure 0B14 from the Harwell Subroutine Library [9] the

surface z = f (A,p ) is approximated inside a cell by quadratics

spanned over triangles. In effect this procedure requires as many

as 16 values of the function in order to plot a part of a line which

is inside a cell (compared to four or even three in the proposed

algorithm). Finally, none of the standard procedures uses any of

the complementary algorithms described above enhancing the

efficiency and versatility of the new method.

IV. NUMERICAL EXAMPLE

The algorithm presented in this paper was successfully applied

to solve characteristic equations in various nonstand~d eigen-

value problems. All c~mplementw agofithms outlined in the

previous section, including the restart facility, were also tested

and found very useful and reliable during the two years of their

exploitation. As an example of the application, a sample disper-

sion diagram for a layered parallel-plate line containing a per-

pendicularly magnetized ferrite is presented in Fig. 4. Such a

structure has been previously investigated by the author [7], and

it was shown that the dispersion equation can be obtained using
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Fig. 4. A sample dispersion dlagraxn obtained with the proposed procedure

(a parallel-plate line with a perpendicularly magnetized layer of a

gyromagnetic medium).

the normal field components approach. The ferrite medium causes

coupling between the modes of tie line. Accordingly, tradition~
methods would require great effort tcl determine the actual curve
run. The new flg~rithm ensi3resefficiency of numerical computa-
tions. In particular, a pmt of tie frame, indicated by the dashed

line, was excluded from calculations by virtue of the theoretical

analysis of the boundary value problem for such a structure [8].

Moreover, the. curves were automatically separated. After the

completion of tlhe first step (low-:resolution mesh: A/? = 0.1

rad/mm, A f = 250 MHz), the procedure found three pairs of

return points. Then the local frames, also shown in the figure,

were constructed and grids with A~ ==0.02 rad/mm and A~ = 50

MHz were used in the correction process. One iteration was

sufficient to separate the curves.

In the example discussed above, the proposed method was

applied to solve a dispersion equation for a complicated wave-

guiding structure. The use of the new method, however, is not

restricted to fin(iing zero loci of equations resulting from the

analysis of eigenvalue problems. This procedure would find ap-

plication in any other situation in which a nonlinear equation of

two variables occurs.

V. CONCLUSIONS

An efficient afgorithm ww proposed to compute the curves of

zero loci of a real function of two variables. Starting from a point

located on the perimeter of the prescribed region; the procedure

follows each cuwe, minimizing the number of function evalua-

tions. Different aspects of the algorithm were highlighted and

ways were ~ven to obtain extreme utility. The method was

successfully applied in various electromagnetic problems and

proved its efficiency, versatility, and reliability.
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Analysis of Coplanar E –~ Plane T-Junction Using

Dissimilar Rectangular Wavegnides

B. N, DAS, G S. N. RAJU, AND AIOY CHAKRABORTY

Abstract —An analysis of a T-junction which differs from conventional

H-plane T-junctions in that the T arm is rotated by 90” and coupling takes

place through an inclined slot is presented. Since use of standard X-band

wavegnides result in such a T-junction operating above 11.7 GHz, non-

standard waveguide dimensions have been considered to bring down the

operating frequency to 9.375 GHz. The effect of a change of the broad

dimension of the primary feed wavegnide on the resonant conductance is

evaluated. ‘fIre variations of resonant length with the angle of inclination of

the slot, and coupling with frequency, are presented.

I. INTRODUCTION

Investigations of H-plane T-junctions have already been re-

ported [1]. In the present paper, thorough analytical investiga-

tions have been carried out on a T-junction (Fig. l(a)) in which

the coupling slot is in the narrow waJl of the primary guide and

the narrow dimension of the coupled guide is oriented along the

axis of the primary guide. As a result, the E field of the coupled

guide and the H field of the primary guide are coplanar and

hence this type of T-junction is designated as a coplanar E-H
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Fig. 1 (a) Coplanar E-H plane T-junction. (b) Equivalent network repre-

senting Impedance loading m gurde 1.

plane T-junction.l The power is coupled to the T-arm through an

inclined slot in the narrow wall of the primary guide. It can be

noted that in this type of T-juncti~n no power can be coupled

using either a longitudinal or a verticaf slot. When such a coupler

is made using standard X-band waveguides the maximum slot

length which can be obtained is 14 mm with an inclination of 45°

and the resonant frequency is around 12 GHz.

In the present work, investigations have been carried out to

find the waveguide dimensions necessary for slots which resonate

around 9.4 GHz. Further investigations have also been carried

out to keep the normalized slot conductance loading on the

primary guide as low as 0.01. This impedance is expressed in

terms of self-reaction and discontinuity in modaf current. Evalua-

tion of self-reaction in the coupled guide employs TE and TM

mode fields instead of the hybrid mode field used earlier [1]. To

obtain the self-reaction in the primary guide, the magnetic cur-

rent in the @clined slot is resolved into transverse and longitudi-

nal components.

Computations have been carried out to obtain the waveguide

dimensions for which a low value of normalized slot conductance

i: obtained at a resonant frequency around 9.375 GHz. Com-

puted results of the various parameters of engineering impor-

tance, e.g., resonant slot length, slot conductance, and coupling,

are presented.

1The Edltrrr has kindly brought to the notice of the authors that this type of

structure was reported by W. H. Watson m Fig, 34 of hrs paper “Resonant

slots,” JIEE (London), vol. 93, pt 3A, pp 747-777, 1946
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